Two-dimensional Simulations of Explosive Eruptions of Kick-em Jenny and Other Submarine Volcanos
نویسندگان
چکیده
Kick-em Jenny, in the Eastern Caribbean, is a submerged volcanic cone that has erupted a dozen or more times since its discovery in 1939. The most likely hazard posed by this volcano is to shipping in the immediate vicinity (through volcanic missiles or loss-of-buoyancy), but it is of interest to estimate upper limits on tsunamis that might be produced by a catastrophic explosive eruption. To this end, we have performed two-dimensional simulations of such an event in a geometry resembling that of Kick-em Jenny with our SAGE adaptive mesh Eulerian multifluid compressible hydrocode. We use realistic equations of state for air, water, and basalt, and follow the event from the initial explosive eruption, through the generation of a transient water cavity and the propagation of waves away from the site. We find that even for extremely catastrophic explosive eruptions, tsunamis from Kick-em Jenny are unlikely to pose significant danger to nearby islands. For comparison, we have also performed simulations of explosive eruptions at the much larger shield volcano Vailulu'u in the Samoan chain, where the greater energy available can produce a more impressive wave. In general, however, we conclude that explosive eruptions do not couple well to water waves. The waves that are produced from such events are turbulent and highly dissipative, and don't propagate well. This is consistent with what we have found previously in simulations of asteroid-impact generated tsunamis. Non-explosive events, however, such as landslides or gas hydrate releases, do couple well to waves, and our simulations of tsunamis generated by subaerial and sub-aqueous landslides demonstrate this. Los Alamos, NM, USA Science of Tsunami Hazards, Vol. 25, No. 1, page 34 (2006)
منابع مشابه
It takes three to tango: 2. Bubble dynamics in basaltic volcanoes and ramifications for modeling normal Strombolian activity
This is the second paper in a two-part series examining numerical simulations of buoyancy-driven flow in the presence of large viscosity contrasts. In the first paper, we demonstrated that a combination of three numerical tools, an extended ghostfluid-type method, the level set approach, and the extension velocity technique accurately simulate complex interface dynamics in the presence of large...
متن کاملزمینشیمی روانه گدازههای هیدروماگمایی کرتاسه در منطقه سپارده، شمال شرق قزوین، البرز مرکزی
The alkaline and stratoid volcanic rocks of Separdeh district (NE Qazvin), located on the central Albroz zone, are underlain conformably by Early Cretaceous limestones of Tizkuh Formation. These rocks are texturally homogenous and very fine-grained and characterized by microphenocrysts and microliths of plagioclase, pyroxene, olivine, apatite and opaque set in a hyaline matrix. However, few pyr...
متن کاملEvidence for Recent Large Magnitude Explosive Eruptions at Damavand Volcano, Iran with Implications for Volcanic Hazards
Damavand is a large dormant stratovolcano in the Alborz Mountains of northern Iran located in one of the most populous provinces, which could be adversely affected by tephra fall from Damavand. The youngest known eruption is a lava flow on the western flanks with an age of 7.3 ka. The volcanic products are predominantly porphyritic trachyandesite. Three major young pumice deposits, named here a...
متن کاملExplosive processes during the 2015 eruption of Axial Seamount, as recorded by seafloor hydrophones
Following the installation of the Ocean Observatories Initiative cabled array, the 2015 eruption of Axial Seamount, Juan de Fuca ridge, became the first submarine eruption to be captured in real time by seafloor seismic and acoustic instruments. This eruption also marked the first instance where the entire eruption cycle of a submarine volcano, from the previous eruption in 2011 to the end of t...
متن کاملFlux measurements of explosive degassing using a yearlong hydroacoustic record at an erupting submarine volcano
[1] The output of gas and tephra from volcanoes is an inherently disorganized process that makes reliable flux estimates challenging to obtain. Continuous monitoring of gas flux has been achieved in only a few instances at subaerial volcanoes, but never for submarine volcanoes. Here we use the first sustained (yearlong) hydroacoustic monitoring of an erupting submarine volcano (NW Rota-1, Maria...
متن کامل